DATAX32123B (HAM)
Advanced Data Analysis
15 Points
Staff
Convenor(s)
Jason Kurz
G.3.31
jason.kurz@waikato.ac.nz

Administrator(s)
Librarian(s)
You can contact staff by:
 Calling +64 7 838 4466 select option 1, then enter the extension.

Extensions starting with 4, 5, 9 or 3 can also be direct dialled:
 For extensions starting with 4: dial +64 7 838 extension.
 For extensions starting with 5: dial +64 7 858 extension.
 For extensions starting with 9: dial +64 7 837 extension.
 For extensions starting with 3: dial +64 7 2620 + the last 3 digits of the extension e.g. 3123 = +64 7 262 0123.
What this paper is about
DATAX321 extends the data collection and analysis techniques introduced in first and second year courses. It is the culmination of important statistical analysis concepts needed for anyone working in the field of data analysisfocusing on a larger variety of techniques while introducing more of the theoretical framework from previously seen concepts. Students who pass this course will be prepared to cope with more challenging and even nonconventional statistical problems encountered in many fields of research or practice.
The application of statistics is the primary focus of this course. The core topics this paper focuses on are the generalized linear models, ANCOVA, classification models, and time series analysis. Students will be expected to use the statistical software R for all applications and relevant analysis conducted as a part of the course. Prior experience with R is assumed.
How this paper will be taught
This paper will be taught through two hours of lectures a week, and a weekly one hour tutorial. The initial part of the course will treat the tutorial time as additional lecture time. This will transition during the second part of the course to focus on the weekly tutorials that will be turned in weekly. Please be aware that the one hour tutorial time will typically not be enough to complete the full tutorial. Students will be expected to complete the tutorials on their own and turn them in as designated by the instructor.
Lectures will be given in person, with Panopto recordings available through Moodle. Students are encouraged to attend class in person so they can ask questions as they arise during lectures.
Learning Outcomes
Students who successfully complete the course should be able to:
Assessments
How you will be assessed
Each half of the paper contributes half of the assessment.
The internal assessment will consist of:
Weeks 16 assessment:
2 assignments (12.5% each).
Weeks 712 assessment:
4 tutorial exercises (3.75% each) and one assignment (10%).
The exam contributes the remaining 50% and will cover both halves of the paper.
A final mark of 50% or higher is required to pass the course. However, note that if you manage to achieve more than 50% overall, but a mark of less than 40% in the exam, you will receive a restricted pass.
The internal assessment/exam ratio (as stated in the University Calendar) is 50:50. The final exam makes up 50% of the overall mark.